Streaming Algorithms for Bin Packing and Vector Scheduling

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online algorithms with advice for bin packing and scheduling problems

We consider the setting of online computation with advice and study the bin packing problem and a number of scheduling problems. We show that it is possible, for any of these problems, to arbitrarily approach a competitive ratio of 1 with only a constant number of bits of advice per request. For the bin packing problem, we give an online algorithm with advice that is (1 + ε)competitive and uses...

متن کامل

Improved Approximation for Vector Bin Packing

We study the d-dimensional vector bin packing problem, a well-studied generalization of bin packing arising in resource allocation and scheduling problems. Here we are given a set of d-dimensional vectors v1, . . . , vn in [0, 1] , and the goal is to pack them into the least number of bins so that for each bin B, the sum of the vectors in it is at most 1 in every dimension, i.e., || ∑ vi∈B vi||...

متن کامل

Improved approximation bounds for Vector Bin Packing

Abstract In this paper we propose an improved approximation scheme for the Vector Bin Packing problem (VBP), based on the combination of (near-)optimal solution of the Linear Programming (LP) relaxation and a greedy (modified first-fit) heuristic. The Vector Bin Packing problem of higher dimension (d ≥ 2) is not known to have asymptotic polynomial-time approximation schemes (unless P = NP). Our...

متن کامل

Parallel Approximation Algorithms for Bin Packing

We study the parallel complexity of polynomial heuristics for the bin packing problem. We show that some well-known (and simple) methods like first-fit-decreasing are P-complete, and it is hence very unlikely that they can be efficiently parallelized. On the other hand, we exhibit an optimal NC algorithm that achieves the same performance bound as does FFD. Finally, we discuss parallelization o...

متن کامل

Linear time-approximation algorithms for bin packing

Simchi-Levi (Naval Res. Logist. 41 (1994) 579–585) proved that the famous bin packing algorithms FF and BF have an absolute worst-case ratio of no more than 4 , and FFD and BFD have an absolute worst-case ratio of 3 2 , respectively. These algorithms run in time O(n log n). In this paper, we provide a linear time constant space (number of bins kept during the execution of the algorithm is const...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theory of Computing Systems

سال: 2020

ISSN: 1432-4350,1433-0490

DOI: 10.1007/s00224-020-10011-y